Issue |
EPJ Photovolt.
Volume 5, 2014
|
|
---|---|---|
Article Number | 50301 | |
Number of page(s) | 6 | |
Section | Semiconductor Thin Films | |
DOI | https://doi.org/10.1051/epjpv/2014005 | |
Published online | 07 July 2014 |
https://doi.org/10.1051/epjpv/2014005
Effect of thermal annealing in vacuum on the photovoltaic properties of electrodeposited Cu2O-absorber solar cell
1
AIT-Austrian Institute of Technology, Energy
Department, Giefinggasse
2, 1221
Vienna,
Austria
2
NanoTecCenter Weiz Forschungsgesellschaft mbH,
Franz-Pichler-Str. 32,
8160
Weiz,
Austria
3
Graz University of Technology, Institute of Solid State
Physics, Petergasse
16, 8010
Graz,
Austria
a e-mail: theodoros.dimopoulos@ait.ac.at
b
Present address: EV Group E. Thallner GmbH, DI Erich Thallner Str. 1,
4782 St. Florian am Inn, Austria.
Received:
24
October
2013
Received in final form:
15
April
2014
Accepted:
15
April
2014
Published online:
7
July
2014
Heterojunction solar cells were fabricated by electrochemical deposition of p-type, cuprous oxide (Cu2O) absorber on sputtered, n-type ZnO layer. X-ray diffraction measurements revealed that the as-deposited absorber consists mainly of Cu2O, but appreciable amounts of metallic Cu and cupric oxide (CuO) are also present. These undesired oxidation states are incorporated during the deposition process and have a detrimental effect on the photovoltaic properties of the cells. The open circuit voltage (VOC), short circuit current density (jSC), fill factor (FF) and power conversion efficiency (η) of the as-deposited cells are 0.37 V, 3.71 mA/cm2, 35.7% and 0.49%, respectively, under AM1.5G illumination. We show that by thermal annealing in vacuum, at temperatures up to 300 °C, compositional purity of the Cu2O absorber could be obtained. A general improvement of the heterojunction and bulk materials quality is observed, reflected upon the smallest influence of the shunt and series resistance on the transport properties of the cells in dark and under illumination. Independent of the annealing temperature, transport is dominated by the space-charge layer generation-recombination current. After annealing at 300 °C the solar cell parameters could be significantly improved to the values of: VOC = 0.505 V, jSC = 4.67 mA/cm2, FF = 47.1% and η = 1.12%.
© Dimopoulos et al., published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.