Issue |
EPJ Photovolt.
Volume 4, 2013
Topical issue: Photovoltaic Technical Conference (PVTC 2012)
|
|
---|---|---|
Article Number | 45102 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/epjpv/2013016 | |
Published online | 08 April 2013 |
https://doi.org/10.1051/epjpv/2013016
Thin film pc-Si by aluminium induced crystallization on metallic substrate
1 CNRS-UdS InESS, Strasbourg, France
2 CEA-Liten, Grenoble, France
a
e-mail: florian.delachat@icube.unistra.fr
Received: 17 September 2012
Accepted: 12 March 2013
Published online: 8 April 2013
Thin film polycrystalline silicon (pc-Si) on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC) of an amorphous silicon (a-Si) thin film on metallic substrates (Ni/Fe alloy) initially coated with a tantalum nitride (TaN) conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film). Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD). At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001) oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.
© Delachat et al., published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.